Derived mapping spaces as models for localizations
نویسندگان
چکیده
This work focuses on a generalization of the models for rational homotopy theory developed by D. Sullivan and D. Quillen and p-adic homotopy developed by M. Mandell to K(1)-local homotopy theory. The work is divided into two parts. The first part is a reflection on M. Mandell's model for p-adic homotopy theory. Reformulating M. Mandell's result in terms of an adjunction between p-complete, nilpotent spaces of finite type and a subcategory of commutative HIF,-algebras, the main theorem shows that the unit of this adjunction induces an isomorphism between the unstable HF, Adams spectral sequence and the HIF, Goerss-Hopkins spectral sequence. The second part generalizes M. Mandell's model for p-adic homotopy theory to give a model for K(1)-localization. The main theorem gives a model for the K(1)localization of an infinite loop space as a certain derived mapping space of K(1)local ring spectra. This result is proven by analyzing a more general functor from finite spectra to a mapping space of K^-algebras using homotopy calculus, and then taking the continuous homotopy fixed points with respect to the prime to p Adams operations. Thesis Supervisor: Mark Behrens Title: Associate Professor of Mathematics
منابع مشابه
نقشهبرداری رقومی کلاسهای خاک با استفاده از نقشه خاک قدیمی در منطقه خشک جنوب شرق ایران
Mapping the spatial distribution of soil taxonomic classes is important for useful and effective use of soil and management decisions. Digital soil mapping (DSM) may have advantages over conventional soil mapping approaches as it may better capture observed spatial variability and reduce the need to aggregate soil types. A key component of any DSM activity is the method used to define the relat...
متن کاملFixed point theorems for new J-type mappings in modular spaces
In this paper, we introduce $rho$-altering $J$-type mappings in modular spaces. We prove some fixed point theorems for $rho$-altering and $rho$-altering $J$-type mappings in modular spaces. We also furnish illustrative examples to express relationship between these mappings. As a consequence, the results are applied to the existence of solution of an integral equation arising from an ODE ...
متن کاملOn the Telescopic Homotopy Theory of Spaces
In telescopic homotopy theory, a space or spectrum X is approximated by a tower of localizations LnX, n ≥ 0, taking account of vn-periodic homotopy groups for progressively higher n. For each n ≥ 1, we construct a telescopic Kuhn functor Φn carrying a space to a spectrum with the same vn-periodic homotopy groups, and we construct a new functor Θn left adjoint to Φn. Using these functors, we sho...
متن کاملFixed fuzzy points of generalized Geraghty type fuzzy mappings on complete metric spaces
Generalized Geraghty type fuzzy mappings oncomplete metric spaces are introduced and a fixed point theorem thatgeneralizes some recent comparable results for fuzzy mappings incontemporary literature is obtained. Example is provided to show thevalidity of obtained results over comparable classical results for fuzzymappings in fixed point theory. As an application, existence of coincidencefuzzy p...
متن کاملIterative Process for an α- Nonexpansive Mapping and a Mapping Satisfying Condition(C) in a Convex Metric Space
We construct one-step iterative process for an α- nonexpansive mapping and a mapping satisfying condition (C) in the framework of a convex metric space. We study △-convergence and strong convergence of the iterative process to the common fixed point of the mappings. Our results are new and are valid in hyperbolic spaces, CAT(0) spaces, Banach spaces and Hilbert spaces, simultaneously.
متن کامل